
B.E (INFORMATION TECHNOLOGY)

ITPC406-DATABASE MANAGEMENT SYSTEM

STAFF NAME - Dr.K.RAJA/AP/IT/FEAT/AU

UNIT–IV

Transaction processing: Concurrency control, ACID property, Serializability

of scheduling, Locking and timestamp based schedulers, Multi-version and

optimistic Concurrency Control schemes, Database recovery.

UNIT–V

Database Security: Authentication, Authorization and access control, DAC,

MAC and RBAC models, Intrusion detection, SQL injection.

Advanced topics: Object oriented and object relational databases, Logical

databases, Web databases, Distributed databases, Data warehousing and data

mining.

ACID properties in DBMS

 To ensure the integrity of data during a transaction (A transaction is a unit

of program that updates various data items, read more about it here), the

database system maintains the following properties. These properties are widely

known as ACID properties:

• Atomicity: This property ensures that either all the operations of a

transaction reflect in database or none. Let’s take an example of banking

system to understand this: Suppose Account A has a balance of 400$

& B has 700$. Account A is transferring 100$ to Account B. This is a

transaction that has two operations a) Debiting 100$ from A’s balance b)

Creating 100$ to B’s balance. Let’s say first operation passed successfully

while second failed, in this case A’s balance would be 300$ while B would

be having 700$ instead of 800$. This is unacceptable in a banking system.

Either the transaction should fail without executing any of the operation or

it should process both the operations. The Atomicity property ensures that.

• Consistency: To preserve the consistency of database, the execution of

transaction should take place in isolation (that means no other transaction

should run concurrently when there is a transaction already running). For

example account A is having a balance of 400$ and it is transferring 100$

to account B & C both. So we have two transactions here. Let’s say these

transactions run concurrently and both the transactions read 400$ balance,

in that case the final balance of A would be 300$ instead of 200$. This is

wrong. If the transaction were to run in isolation then the second transaction

would have read the correct balance 300$ (before debiting 100$) once the

first transaction went successful.

• Isolation: For every pair of transactions, one transaction should start

execution only when the other finished execution. I have already discussed

the example of Isolation in the Consistency property above.

• Durability: Once a transaction completes successfully, the changes it has

made into the database should be permanent even if there is a system

failure. The recovery-management component of database systems ensures

the durability of transaction.

DBMS Transaction States

In this guide, we will discuss the states of a transaction in DBMS. A

transaction in DBMS can be in one of the following states.

DBMS Transaction States Diagram

Lets discuss these states one by one.

Active State

As we have discussed in the DBMS transaction introduction that a transaction is

a sequence of operations. If a transaction is in execution then it is said to be in

active state. It doesn’t matter which step is in execution, until unless the

transaction is executing, it remains in active state.

https://beginnersbook.com/2017/09/transaction-management-in-dbms/

Failed State

If a transaction is executing and a failure occurs, either a hardware failure or a

software failure then the transaction goes into failed state from the active state.

Partially Committed State

As we can see in the above diagram that a transaction goes into “partially

committed” state from the active state when there are read and write operations

present in the transaction.

A transaction contains number of read and write operations. Once the whole

transaction is successfully executed, the transaction goes into partially

committed state where we have all the read and write operations performed on

the main memory (local memory) instead of the actual database.

The reason why we have this state is because a transaction can fail during

execution so if we are making the changes in the actual database instead of local

memory, database may be left in an inconsistent state in case of any

failure. This state helps us to rollback the changes made to the database in

case of a failure during execution.

Committed State

If a transaction completes the execution successfully then all the changes made

in the local memory during partially committed state are permanently stored in

the database. You can also see in the above diagram that a transaction goes from

partially committed state to committed state when everything is successful.

Aborted State

As we have seen above, if a transaction fails during execution then the

transaction goes into a failed state. The changes made into the local memory (or

buffer) are rolled back to the previous consistent state and the transaction goes

into aborted state from the failed state. Refer the diagram to see the interaction

between failed and aborted state.

DBMS Schedules and the Types of Schedules

We know that transactions are set of instructions and these instructions perform

operations on database. When multiple transactions are running concurrently

then there needs to be a sequence in which the operations are performed

because at a time only one operation can be performed on the database. This

sequence of operations is known as Schedule.

https://beginnersbook.com/2017/09/transaction-management-in-dbms/

Lets take an example to understand what is a schedule in DBMS.

DBMS Schedule example

The following sequence of operations is a schedule. Here we have two

transactions T1 & T2 which are running concurrently.

This schedule determines the exact order of operations that are going to be

performed on database. In this example, all the instructions of transaction T1 are

executed before the instructions of transaction T2, however this is not always

necessary and we can have various types of schedules which we will discuss in

this article.

T1 T2

---- ----

R(X)

W(X)

R(Y)

 R(Y)

 R(X)

 W(Y)

Types of Schedules in DBMS

We have various types of schedules in DBMS. Lets discuss them one by one.

Serial Schedule

In Serial schedule, a transaction is executed completely before starting the

execution of another transaction. In other words, you can say that in serial

schedule, a transaction does not start execution until the currently running

transaction finished execution. This type of execution of transaction is also

known as non-interleaved execution. The example we have seen above is the

serial schedule.

Lets take another example.

Serial Schedule example

Here R refers to the read operation and W refers to the write operation. In this

example, the transaction T2 does not start execution until the transaction T1 is

finished.

T1 T2

---- ----

R(A)

R(B)

W(A)

commit

 R(B)

 R(A)

 W(B)

 commit

Strict Schedule

In Strict schedule, if the write operation of a transaction precedes a conflicting

operation (Read or Write operation) of another transaction then the commit or

abort operation of such transaction should also precede the conflicting operation

of other transaction.

Lets take an example.

Strict Schedule example

Lets say we have two transactions Ta and Tb. The write operation of transaction

Ta precedes the read or write operation of transaction Tb, so the commit or

abort operation of transaction Ta should also precede the read or write of Tb.

Ta Tb

----- -----

R(X)

 R(X)

W(X)

commit

 W(X)

 R(X)

 commit

Here the write operation W(X) of Ta precedes the conflicting operation (Read

or Write operation) of Tb so the conflicting operation of Tb had to wait the

commit operation of Ta.

Cascadeless Schedule

In Cascadeless Schedule, if a transaction is going to perform read operation on a

value, it has to wait until the transaction who is performing write on that value

commits.

Cascadeless Schedule example

For example, lets say we have two transactions Ta and Tb. Tb is going to read

the value X after the W(X) of Ta then Tb has to wait for the commit operation

of transaction Ta before it reads the X.

Ta Tb

----- -----

R(X)

W(X)

 W(X)

commit

 R(X)

 W(X)

 commit

Recoverable Schedule

In Recoverable schedule, if a transaction is reading a value which has been

updated by some other transaction then this transaction can commit only after

the commit of other transaction which is updating value.

Recoverable Schedule example

Here Tb is performing read operation on X after the Ta has made changes in X

using W(X) so Tb can only commit after the commit operation of Ta.

Ta Tb

----- -----

R(X)

W(X)

 R(X)

 W(X)

 R(X)

commit

 commit

DBMS Serializability

When multiple transactions are running concurrently then there is a possibility

that the database may be left in an inconsistent state. Serializability is a concept

that helps us to check which schedules are serializable. A serializable schedule

is the one that always leaves the database in consistent state.

What is a serializable schedule?

A serializable schedule always leaves the database in consistent state. A serial

schedule is always a serializable schedule because in serial schedule, a

transaction only starts when the other transaction finished execution. However a

non-serial schedule needs to be checked for Serializability.

A non-serial schedule of n number of transactions is said to be serializable

schedule, if it is equivalent to the serial schedule of those n transactions. A

serial schedule doesn’t allow concurrency, only one transaction executes at a

time and the other starts when the already running transaction finished.

Types of Serializability

There are two types of Serializability.

1. Conflict Serializability

2. View Serializability

DBMS Conflict Serializability

In the DBMS Schedules guide, we learned that there are two types of schedules

– Serial & Non-Serial. A Serial schedule doesn’t support concurrent execution

of transactions while a non-serial schedule supports concurrency. We also

learned in Serializability tutorial that a non-serial schedule may leave the

database in inconsistent state so we need to check these non-serial schedules for

the Serializability.

https://beginnersbook.com/2018/12/dbms-schedules/
https://beginnersbook.com/2018/12/dbms-schedules/
https://beginnersbook.com/2018/12/dbms-schedules/
https://beginnersbook.com/2018/12/dbms-conflict-serializability/
https://beginnersbook.com/2018/12/dbms-view-serializability/
https://beginnersbook.com/2018/12/dbms-schedules/
https://beginnersbook.com/2018/12/dbms-serializability/

Conflict Serializability is one of the type of Serializability, which can be used

to check whether a non-serial schedule is conflict serializable or not.

What is Conflict Serializability?

A schedule is called conflict serializable if we can convert it into a serial

schedule after swapping its non-conflicting operations.

Conflicting operations

Two operations are said to be in conflict, if they satisfy all the following three

conditions:

1. Both the operations should belong to different transactions.

2. Both the operations are working on same data item.

3. At least one of the operation is a write operation.

Lets see some examples to understand this:

Example 1: Operation W(X) of transaction T1 and operation R(X) of

transaction T2 are conflicting operations, because they satisfy all the three

conditions mentioned above. They belong to different transactions, they are

working on same data item X, one of the operation in write operation.

Example 2: Similarly Operations W(X) of T1 and W(X) of T2 are conflicting

operations.

Example 3: Operations W(X) of T1 and W(Y) of T2 are non-conflicting

operations because both the write operations are not working on same data item

so these operations don’t satisfy the second condition.

Example 4: Similarly R(X) of T1 and R(X) of T2 are non-conflicting

operations because none of them is write operation.

Example 5: Similarly W(X) of T1 and R(X) of T1 are non-conflicting

operations because both the operations belong to same transaction T1.

Conflict Equivalent Schedules

Two schedules are said to be conflict Equivalent if one schedule can be

converted into other schedule after swapping non-conflicting operations.

Conflict Serializable check

Lets check whether a schedule is conflict serializable or not. If a schedule is

conflict Equivalent to its serial schedule then it is called Conflict Serializable

schedule. Lets take few examples of schedules.

Example of Conflict Serializability

Lets consider this schedule:

T1 T2

----- ------

R(A)

R(B)

 R(A)

 R(B)

 W(B)

W(A)

To convert this schedule into a serial schedule we must have to swap the R(A)

operation of transaction T2 with the W(A) operation of transaction T1. However

we cannot swap these two operations because they are conflicting operations,

thus we can say that this given schedule is not Conflict Serializable.

Lets take another example:

T1 T2

----- ------

R(A)

 R(A)

 R(B)

 W(B)

R(B)

W(A)

Lets swap non-conflicting operations:

After swapping R(A) of T1 and R(A) of T2 we get:

T1 T2

----- ------

 R(A)

R(A)

 R(B)

 W(B)

R(B)

W(A)

After swapping R(A) of T1 and R(B) of T2 we get:

T1 T2

----- ------

 R(A)

 R(B)

R(A)

 W(B)

R(B)

W(A)

After swapping R(A) of T1 and W(B) of T2 we get:

T1 T2

----- ------

 R(A)

 R(B)

 W(B)

R(A)

R(B)

W(A)

We finally got a serial schedule after swapping all the non-conflicting

operations so we can say that the given schedule is Conflict Serializable.

DBMS View Serializability

In the last tutorial, we learned Conflict Serializability. In this article, we will

discuss another type of serializability which is known as View Serializability.

What is View Serializability?

View Serializability is a process to find out that a given schedule is view

serializable or not.

To check whether a given schedule is view serializable, we need to check

whether the given schedule is View Equivalent to its serial schedule. Lets take

an example to understand what I mean by that.

https://beginnersbook.com/2018/12/dbms-conflict-serializability/
https://beginnersbook.com/2018/12/dbms-schedules/

Given Schedule:

T1 T2

----- ------

R(X)

W(X)

 R(X)

 W(X)

R(Y)

W(Y)

 R(Y)

 W(Y)

Serial Schedule of the above given schedule:

As we know that in Serial schedule a transaction only starts when the current

running transaction is finished. So the serial schedule of the above given

schedule would look like this:

T1 T2

----- ------

R(X)

W(X)

R(Y)

W(Y)

 R(X)

 W(X)

 R(Y)

 W(Y)

If we can prove that the given schedule is View Equivalent to its serial

schedule then the given schedule is called view Serializable.

Why we need View Serializability?

We know that a serial schedule never leaves the database in inconsistent state

because there are no concurrent transactions execution. However a non-serial

schedule can leave the database in inconsistent state because there are multiple

transactions running concurrently. By checking that a given non-serial schedule

is view serializable, we make sure that it is a consistent schedule.

You may be wondering instead of checking that a non-serial schedule is

serializable or not, can’t we have serial schedule all the time? The answer is no,

because concurrent execution of transactions fully utilize the system resources

and are considerably faster compared to serial schedules.

https://beginnersbook.com/2018/12/dbms-schedules/

View Equivalent

Lets learn how to check whether the two schedules are view equivalent.

Two schedules T1 and T2 are said to be view equivalent, if they satisfy all the

following conditions:

1. Initial Read: Initial read of each data item in transactions must match in both

schedules. For example, if transaction T1 reads a data item X before transaction

T2 in schedule S1 then in schedule S2, T1 should read X before T2.

Read vs Initial Read: You may be confused by the term initial read. Here

initial read means the first read operation on a data item, for example, a data

item X can be read multiple times in a schedule but the first read operation on X

is called the initial read. This will be more clear once we will get to the example

in the next section of this same article.

2. Final Write: Final write operations on each data item must match in both the

schedules. For example, a data item X is last written by Transaction T1 in

schedule S1 then in S2, the last write operation on X should be performed by

the transaction T1.

3. Update Read: If in schedule S1, the transaction T1 is reading a data item

updated by T2 then in schedule S2, T1 should read the value after the write

operation of T2 on same data item. For example, In schedule S1, T1 performs a

read operation on X after the write operation on X by T2 then in S2, T1 should

read the X after T2 performs write on X.View Serializable

If a schedule is view equivalent to its serial schedule then the given schedule is

said to be View Serializable. Lets take an example.

View Serializable Example

Lets check the three conditions of view serializability:

Initial Read

In schedule S1, transaction T1 first reads the data item X. In S2 also transaction

T1 first reads the data item X.

Lets check for Y. In schedule S1, transaction T1 first reads the data item Y. In

S2 also the first read operation on Y is performed by T1.

We checked for both data items X & Y and the initial read condition is

satisfied in S1 & S2.

Final Write

In schedule S1, the final write operation on X is done by transaction T2. In S2

also transaction T2 performs the final write on X.

Lets check for Y. In schedule S1, the final write operation on Y is done by

transaction T2. In schedule S2, final write on Y is done by T2.

We checked for both data items X & Y and the final write condition is satisfied

in S1 & S2.

Update Read

In S1, transaction T2 reads the value of X, written by T1. In S2, the same

transaction T2 reads the X after it is written by T1.

In S1, transaction T2 reads the value of Y, written by T1. In S2, the same

transaction T2 reads the value of Y after it is updated by T1.

The update read condition is also satisfied for both the schedules.

Result: Since all the three conditions that checks whether the two schedules are

view equivalent are satisfied in this example, which means S1 and S2 are view

equivalent. Also, as we know that the schedule S2 is the serial schedule of S1,

thus we can say that the schedule S1 is view serializable schedule.

Deadlock in DBMS

A deadlock is a condition wherein two or more tasks are waiting for each other

in order to be finished but none of the task is willing to give up the resources

that other task needs. In this situation no task ever gets finished and is in waiting

state forever.

Coffman conditions

Coffman stated four conditions for a deadlock occurrence. A deadlock may

occur if all the following conditions holds true.

• Mutual exclusion condition: There must be at least one resource that

cannot be used by more than one process at a time.

• Hold and wait condition: A process that is holding a resource can request

for additional resources that are being held by other processes in the system.

• No preemption condition: A resource cannot be forcibly taken from a

process. Only the process can release a resource that is being held by it.

• Circular wait condition: A condition where one process is waiting for a

resource that is being held by second process and second process is waiting

for third process ….so on and the last process is waiting for the first

process. Thus making a circular chain of waiting.

Deadlock Handling

Ignore the deadlock (Ostrich algorithm)

Did that made you laugh? You may be wondering how ignoring a deadlock can

come under deadlock handling. But to let you know that the windows you are

using on your PC, uses this approach of deadlock handling and that is reason

sometimes it hangs up and you have to reboot it to get it working. Not only

Windows but UNIX also uses this approach.

The question is why? Why instead of dealing with a deadlock they ignore it

and why this is being called as Ostrich algorithm?

Well! Let me answer the second question first, This is known as Ostrich

algorithm because in this approach we ignore the deadlock and pretends that it

would never occur, just like Ostrich behavior “to stick one’s head in the sand

and pretend there is no problem.”

Let’s discuss why we ignore it: When it is believed that deadlocks are very

rare and cost of deadlock handling is higher, in that case ignoring is better

solution than handling it. For example: Let’s take the operating system example

– If the time requires handling the deadlock is higher than the time requires

rebooting the windows then rebooting would be a preferred choice considering

that deadlocks are very rare in windows.

Deadlock detection

Resource scheduler is one that keeps the track of resources allocated to and

requested by processes. Thus, if there is a deadlock it is known to the resource

scheduler. This is how a deadlock is detected.

Once a deadlock is detected it is being corrected by following methods:

• Terminating processes involved in deadlock: Terminating all the

processes involved in deadlock or terminating process one by one until

deadlock is resolved can be the solutions but both of these approaches are

not good. Terminating all processes cost high and partial work done by

processes gets lost. Terminating one by one takes lot of time because each

time a process is terminated, it needs to check whether the deadlock is

resolved or not. Thus, the best approach is considering process age and

priority while terminating them during a deadlock condition.

• Resource Preemption: Another approach can be the preemption of

resources and allocation of them to the other processes until the deadlock is

resolved.

Deadlock prevention

We have learnt that if all the four Coffman conditions hold true then a deadlock

occurs so preventing one or more of them could prevent the deadlock.

• Removing mutual exclusion: All resources must be sharable that means at

a time more than one processes can get a hold of the resources. That

approach is practically impossible.

• Removing hold and wait condition: This can be removed if the process

acquires all the resources that are needed before starting out. Another way

to remove this to enforce a rule of requesting resource when there are none

in held by the process.

• Preemption of resources: Preemption of resources from a process can

result in rollback and thus this needs to be avoided in order to maintain the

consistency and stability of the system.

• Avoid circular wait condition: This can be avoided if the resources are

maintained in a hierarchy and process can hold the resources in increasing

order of precedence. This avoid circular wait. Another way of doing this to

force one resource per process rule – A process can request for a resource

once it releases the resource currently being held by it. This avoids the

circular wait.

Deadlock Avoidance

Deadlock can be avoided if resources are allocated in such a way that it avoids

the deadlock occurrence. There are two algorithms for deadlock avoidance.

• Wait/Die

• Wound/Wait

Here is the table representation of resource allocation for each algorithm. Both

of these algorithms take process age into consideration while determining the

best possible way of resource allocation for deadlock avoidance.

Wait/Die Wound/Wait

Older process needs a resource held

by younger process

Older

process waits

Younger

process dies

Younger process needs a resource

held by older process

Younger

process dies

Younger

process waits

Once of the famous deadlock avoidance algorithm is Banker’s algorithm

Concurrency Control in DBMS

When more than one transactions are running simultaneously there are chances

of a conflict to occur which can leave database to an inconsistent state. To

handle these conflicts we need concurrency control in DBMS, which allows

transactions to run simultaneously but handles them in such a way so that the

integrity of data remains intact.

Let’s take an example to understand what I’m talking here.

Conflict Example

You and your brother have a joint bank account, from which you both can

withdraw money. Now let’s say you both go to different branches of the same

bank at the same time and try to withdraw 5000 INR, your joint account has

only 6000 balance. Now if we don’t have concurrency control in place you both

can get 5000 INR at the same time but once both the transactions finish the

account balance would be -4000 which is not possible and leaves the database

in inconsistent state.

We need something that controls the transactions in such a way that allows the

transaction to run concurrently but maintaining the consistency of data to avoid

such issues.

Solution of Conflicts: Locks

A lock is kind of a mechanism that ensures that the integrity of data is

maintained. There are two types of a lock that can be placed while accessing the

data so that the concurrent transaction can not alter the data while we are

processing it.

1. Shared Lock(S)

2. Exclusive Lock(X)

1. Shared Lock(S): Shared lock is placed when we are reading the data,

multiple shared locks can be placed on the data but when a shared lock is placed

no exclusive lock can be placed.

For example, when two transactions are reading Steve’s account balance, let

them read by placing shared lock but at the same time if another transaction

wants to update the Steve’s account balance by placing Exclusive lock, do not

allow it until reading is finished.

2. Exclusive Lock(X): Exclusive lock is placed when we want to read and write

the data. This lock allows both the read and write operation, Once this lock is

placed on the data no other lock (shared or Exclusive) can be placed on the data

until Exclusive lock is released.

For example, when a transaction wants to update the Steve’s account balance,

let it do by placing X lock on it but if a second transaction wants to read the

data(S lock) don’t allow it, if another transaction wants to write the data(X lock)

don’t allow that either.

So based on this we can create a table like this:

Lock Compatibility Matrix

| | S | X |

|-------------------------

| S | True | False |

|-------------------------

| X | False | False |

How to read this matrix?:

There are two rows, first row says that when S lock is placed, another S lock

can be acquired so it is marked true but no Exclusive locks can be acquired so

marked False.

In second row, When X lock is acquired neither S nor X lock can be acquired so

both marked false.

DBMS Concurrency Control: Two Phase, Timestamp, Lock-Based

Protocol

What is Concurrency Control?

Concurrency control is the procedure in DBMS for managing simultaneous

operations without conflicting with each another. Concurrent access is quite

easy if all users are just reading data. There is no way they can interfere with

one another. Though for any practical database, would have a mix of reading

and WRITE operations and hence the concurrency is a challenge.

Concurrency control is used to address such conflicts which mostly occur with a

multi-user system. It helps you to make sure that database transactions are

performed concurrently without violating the data integrity of respective

databases.

Therefore, concurrency control is a most important element for the proper

functioning of a system where two or multiple database transactions that require

access to the same data, are executed simultaneously.

In this tutorial, you will learn

• What is Concurrency Control?

• Potential problems of Concurrency

• Why use Concurrency method?

• Concurrency Control Protocols

• Lock-based Protocols

• Two Phase Locking (2PL) Protocol

• Timestamp-based Protocols

• Characteristics of Good Concurrency Protocol

Potential problems of Concurrency

Here, are some issues which you will likely to face while using the Concurrency

Control method:

• Lost Updates occur when multiple transactions select the same row and

update the row based on the value selected

• Uncommitted dependency issues occur when the second transaction

selects a row which is updated by another transaction (dirty read)

• Non-Repeatable Read occurs when a second transaction is trying to

access the same row several times and reads different data each time.

• Incorrect Summary issue occurs when one transaction takes summary

over the value of all the instances of a repeated data-item, and second

transaction update few instances of that specific data-item. In that

situation, the resulting summary does not reflect a correct result.

Why use Concurrency method?

Reasons for using Concurrency control method is DBMS:

• To apply Isolation through mutual exclusion between conflicting

transactions

• To resolve read-write and write-write conflict issues

• To preserve database consistency through constantly preserving

execution obstructions

• The system needs to control the interaction among the concurrent

transactions. This control is achieved using concurrent-control schemes.

• Concurrency control helps to ensure serializability

https://www.guru99.com/dbms-concurrency-control.html#1
https://www.guru99.com/dbms-concurrency-control.html#2
https://www.guru99.com/dbms-concurrency-control.html#3
https://www.guru99.com/dbms-concurrency-control.html#4
https://www.guru99.com/dbms-concurrency-control.html#5
https://www.guru99.com/dbms-concurrency-control.html#6
https://www.guru99.com/dbms-concurrency-control.html#7
https://www.guru99.com/dbms-concurrency-control.html#8

Example

Assume that two people who go to electronic kiosks at the same time to buy a

movie ticket for the same movie and the same show time.

However, there is only one seat left in for the movie show in that particular

theatre. Without concurrency control, it is possible that both moviegoers will

end up purchasing a ticket. However, concurrency control method does not

allow this to happen. Both moviegoers can still access information written in the

movie seating database. But concurrency control only provides a ticket to the

buyer who has completed the transaction process first.

Concurrency Control Protocols

Different concurrency control protocols offer different benefits between the

amount of concurrency they allow and the amount of overhead that they

impose.

• Lock-Based Protocols

• Two Phase

• Timestamp-Based Protocols

• Validation-Based Protocols

Lock-based Protocols

A lock is a data variable which is associated with a data item. This lock signifies

that operations that can be performed on the data item. Locks help synchronize

access to the database items by concurrent transactions.

All lock requests are made to the concurrency-control manager. Transactions

proceed only once the lock request is granted.

Binary Locks: A Binary lock on a data item can either locked or unlocked

states.

Shared/exclusive: This type of locking mechanism separates the locks based on

their uses. If a lock is acquired on a data item to perform a write operation, it is

called an exclusive lock.

1. Shared Lock (S):

A shared lock is also called a Read-only lock. With the shared lock, the data

item can be shared between transactions. This is because you will never have

permission to update data on the data item.

For example, consider a case where two transactions are reading the account

balance of a person. The database will let them read by placing a shared lock.

However, if another transaction wants to update that account's balance, shared

lock prevent it until the reading process is over.

2. Exclusive Lock (X):

With the Exclusive Lock, a data item can be read as well as written. This is

exclusive and can't be held concurrently on the same data item. X-lock is

requested using lock-x instruction. Transactions may unlock the data item after

finishing the 'write' operation.

For example, when a transaction needs to update the account balance of a

person. You can allows this transaction by placing X lock on it. Therefore,

when the second transaction wants to read or write, exclusive lock prevent this

operation.

3. Simplistic Lock Protocol

This type of lock-based protocols allows transactions to obtain a lock on every

object before beginning operation. Transactions may unlock the data item after

finishing the 'write' operation.

4. Pre-claiming Locking

Pre-claiming lock protocol helps to evaluate operations and create a list of

required data items which are needed to initiate an execution process. In the

situation when all locks are granted, the transaction executes. After that, all

locks release when all of its operations are over.

Starvation

Starvation is the situation when a transaction needs to wait for an indefinite

period to acquire a lock.

Following are the reasons for Starvation:

• When waiting scheme for locked items is not properly managed

• In the case of resource leak

• The same transaction is selected as a victim repeatedly

Deadlock

Deadlock refers to a specific situation where two or more processes are waiting

for each other to release a resource or more than two processes are waiting for

the resource in a circular chain.

Two Phase Locking (2PL) Protocol

Two-Phase locking protocol which is also known as a 2PL protocol. It is also

called P2L. In this type of locking protocol, the transaction should acquire a

lock after it releases one of its locks.

This locking protocol divides the execution phase of a transaction into three

different parts.

• In the first phase, when the transaction begins to execute, it requires

permission for the locks it needs.

• The second part is where the transaction obtains all the locks. When a

transaction releases its first lock, the third phase starts.

• In this third phase, the transaction cannot demand any new locks. Instead,

it only releases the acquired locks.

The Two-Phase Locking protocol allows each transaction to make a lock or

unlock request in two steps:

• Growing Phase: In this phase transaction may obtain locks but may not

release any locks.

• Shrinking Phase: In this phase, a transaction may release locks but not

obtain any new lock

It is true that the 2PL protocol offers serializability. However, it does not ensure

that deadlocks do not happen.

https://www.guru99.com/images/1/100518_0439_DBMSConcurr1.png

In the above-given diagram, you can see that local and global deadlock

detectors are searching for deadlocks and solve them with resuming transactions

to their initial states.

Strict Two-Phase Locking Method

Strict-Two phase locking system is almost similar to 2PL. The only difference

is that Strict-2PL never releases a lock after using it. It holds all the locks until

the commit point and releases all the locks at one go when the process is over.

Centralized 2PL

In Centralized 2 PL, a single site is responsible for lock management process. It

has only one lock manager for the entire DBMS.

Primary copy 2PL

Primary copy 2PL mechanism, many lock managers are distributed to different

sites. After that, a particular lock manager is responsible for managing the lock

for a set of data items. When the primary copy has been updated, the change is

propagated to the slaves.

Distributed 2PL

In this kind of two-phase locking mechanism, Lock managers are distributed to

all sites. They are responsible for managing locks for data at that site. If no data

is replicated, it is equivalent to primary copy 2PL. Communication costs of

Distributed 2PL are quite higher than primary copy 2PL

Timestamp-based Protocols

The timestamp-based algorithm uses a timestamp to serialize the execution of

concurrent transactions. This protocol ensures that every conflicting read and

write operations are executed in timestamp order. The protocol uses the System

Time or Logical Count as a Timestamp.

The older transaction is always given priority in this method. It uses system

time to determine the time stamp of the transaction. This is the most commonly

used concurrency protocol.

Lock-based protocols help you to manage the order between the conflicting

transactions when they will execute. Timestamp-based protocols manage

conflicts as soon as an operation is created.

Example:

Suppose there are there transactions T1, T2, and T3.

T1 has entered the system at time 0010

T2 has entered the system at 0020

T3 has entered the system at 0030

Priority will be given to transaction T1, then transaction T2 and lastly Transacti

on T3.

Advantages:

• Schedules are serializable just like 2PL protocols

• No waiting for the transaction, which eliminates the possibility of

deadlocks!

Disadvantages:

Starvation is possible if the same transaction is restarted and continually aborted

Characteristics of Good Concurrency Protocol

An ideal concurrency control DBMS mechanism has the following objectives:

• Must be resilient to site and communication failures.

• It allows the parallel execution of transactions to achieve maximum

concurrency.

• Its storage mechanisms and computational methods should be modest to

minimize overhead.

• It must enforce some constraints on the structure of atomic actions of

transactions.

Summary

• Concurrency control is the procedure in DBMS for managing

simultaneous operations without conflicting with each another.

• Lost Updates, dirty read, Non-Repeatable Read, and Incorrect Summary

Issue are problems faced due to lack of concurrency control.

• Lock-Based, Two-Phase, Timestamp-Based, Validation-Based are types

of Concurrency handling protocols

• The lock could be Shared (S) or Exclusive (X)

• Two-Phase locking protocol which is also known as a 2PL protocol needs

transaction should acquire a lock after it releases one of its locks. It has 2

phases growing and shrinking.

• The timestamp-based algorithm uses a timestamp to serialize the

execution of concurrent transactions. The protocol uses the System Time

or Logical Count as a Timestamp.

Multiversion Concurrency Control:

Multiversion schemes keep old versions of data item to increase concurrency.

Multiversion 2 phase locking:

Each successful write results in the creation of a new version of the data item

written. Timestamps are used to label the versions. When a read(X) operation is

issued, select an appropriate version of X based on the timestamp of the

transaction.

The optimistic concurrency control (MVOCC) algorithm is based on the

assumption that transactions are unlikely to conflict. They are split into three

phases: read, validation, and write, and the protocol minimizes the time that a

transaction holds locks on tuples. This protocol is used in MemSQL, HyPer, and

MS Hekaton.

DATABASE RECOVERY IN DBMS AND ITS TECHNIQUES: There can

be any case in database system like any computer system when database failure

happens. So data stored in database should be available all the time whenever it

is needed. So Database recovery means recovering the data when it get deleted,

hacked or damaged accidentally. Atomicity is must whether is transaction is

over or not it should reflect in the database permanently or it should not effect

the database at all. So database recovery and database recovery techniques are

must in DBMS. So database recovery techniques in DBMS are given below.

Also See: Keys in DBMS

Crash recovery:

DBMS may be an extremely complicated system with many transactions being

executed each second. The sturdiness and hardiness of software rely upon its

complicated design and its underlying hardware and system package. If it fails

or crashes amid transactions, it’s expected that the system would follow some

style of rule or techniques to recover lost knowledge.

DATABASE RECOVERY IN DBMS AND ITS TECHNIQUES

Classification of failure:

To see wherever the matter has occurred, we tend to generalize a failure into

numerous classes, as follows:

• Transaction failure

• System crash

• Disk failure

https://whatisdbms.com/what-is-a-database/
https://whatisdbms.com/what-is-database-management-system-dbms/
https://whatisdbms.com/11-keys-in-database-management-system/

Types of Failure

1. Transaction failure: A transaction needs to abort once it fails to execute

or once it reaches to any further extent from wherever it can’t go to any

extent further. This is often known as transaction failure wherever solely

many transactions or processes are hurt. The reasons for transaction

failure are:

• Logical errors

• System errors

1. Logical errors: Where a transaction cannot complete as a result of its

code error or an internal error condition.

2. System errors: Wherever the information system itself terminates an

energetic transaction as a result of the DBMS isn’t able to execute it, or

it’s to prevent due to some system condition. to Illustrate, just in case of

situation or resource inconvenience, the system aborts an active

transaction.

3. System crash: There are issues − external to the system − that will cause

the system to prevent abruptly and cause the system to crash. For

instance, interruptions in power supply might cause the failure of

underlying hardware or software package failure. Examples might

include OS errors.

4. Disk failure: In early days of technology evolution, it had been a typical

drawback wherever hard-disk drives or storage drives accustomed to

failing oftentimes. Disk failures include the formation of dangerous

sectors, unreachability to the disk, disk crash or the other failure, that

destroys all or a section of disk storage.

Database SecurityDatabase security has many different layers, but the key

aspects are:

Authentication

User authentication is to make sure that the person accessing the database is

who he claims to be. Authentication can be done at the operating system level

or even the database level itself. Many authentication systems such as retina

scanners or bio-metrics are used to make sure unauthorized people cannot

access the database.

https://whatisdbms.com/wp-content/uploads/2018/06/types-of-failure.jpg

Authorization

Authorization is a privilege provided by the Database Administer. Users of the

database can only view the contents they are authorized to view. The rest of the

database is out of bounds to them.

The different permissions for authorizations available are:

• Primary Permission - This is granted to users publicly and directly.

• Secondary Permission - This is granted to groups and automatically

awarded to a user if he is a member of the group.

• Public Permission - This is publicly granted to all the users.

• Context sensitive permission - This is related to sensitive content and

only granted to a select users.

The categories of authorization that can be given to users are:

• System Administrator - This is the highest administrative authorization

for a user. Users with this authorization can also execute some database

administrator commands such as restore or upgrade a database.

• System Control - This is the highest control authorization for a user.

This allows maintenance operations on the database but not direct access

to data.

• System Maintenance - This is the lower level of system control

authority. It also allows users to maintain the database but within a

database manager instance.

• System Monitor - Using this authority, the user can monitor the

database and take snapshots of it.

Database Integrity

Data integrity in the database is the correctness, consistency and completeness

of data. Data integrity is enforced using the following three integrity constraints:

• Entity Integrity - This is related to the concept of primary keys. All

tables should have their own primary keys which should uniquely identify

a row and not be NULL.

• Referential Integrity - This is related to the concept of foreign keys. A

foreign key is a key of a relation that is referred in another relation.

• Domain Integrity - This means that there should be a defined domain

for all the columns in a database.

Access Control

Access control is responsible for control of rules determined by security policies

for all direct accesses to the system. Traditional control systems work with

notions subject, object and operation.

Authorization Models: ACL, DAC, MAC, RBAC, ABAC

ACL (Access Control List)

• Subject can Action to Object

• Base on user and group

Example

1. Granting Dino article created permission.

2. Subject: Dino

3. Action: Create

4. Object: Article

5. Dino can create article now.

DAC (Discretionary Access Control)

The controls are discretionary in the sense that a subject with a certain access

permission is capable of passing that permission (perhaps indirectly) on to any

other subject.

• Subject can Action to Object

• Subject can grant other Subject

• Base on user and group

Example

1. Granting Dino article created permission.

2. Subject: Dino

3. Action: Create

4. Object: Article

5. Dino can create article now, and give this permission to others.

6. Dino grants James to create articles.

7. Subject: James

8. Action: Create

9. Object: Article

10. James can create article now.

MAC (Mandatory Access Control)

Subjects and objects each have a set of security attributes. Whenever a

subject attempts to access an object, an authorization rule enforced by the

operating system kernel examines these security attributes and decides whether

the access can take place. Any operation by any subject on any object is tested

against the set of authorization rules (aka policy) to determine if the operation is

allowed.

With mandatory access control, this security policy is centrally controlled by a

security policy administrator; users do not have the ability to override the policy

and, for example, grant access to files that would otherwise be restricted.

• Subject can Action to Object

• Object can be Action by Subject

• Base on user and group

Example

1. Granting Dino article created permission.

2. Subject: Dino

3. Action: Create

4. Object: Article

5. Let Article could be created by Dino.

6. Subject: Article

7. Action: Created

8. Object: Dino

9. Dino can create article now.

RBAC (Role-Based Access Control)

RBAC differs from access control lists (ACLs), used in traditional discretionary

access-control systems, in that it assigns permissions to specific operations

with meaning in the organization, rather than to low level data objects. For

example, an access control list could be used to grant or deny write access to a

particular system file, but it would not dictate how that file could be changed. In

an RBAC-based system, an operation might be to ‘create a credit account’

transaction in a financial application or to ‘populate a blood sugar level test’

record in a medical application.

• Subject is a Role which has Permission of Action to Object

• Can implement mandatory access control (MAC) or discretionary access

control (DAC).

• (User or group)-role-permission-object

• Concept

o Subject

o Role

o Permission

o Operation

Group vs Role

• Group: a collection of users

o Dino, James and Liam are members of Meifamly Organization.

• Role: a collection of permissions

o Writer is a role, which can create, update articles.

o Role can be applied to user and group.

Example

1. Set permissions named write article and manage article

2. Permission:

3. - Name: write article

4. - Operations:

5. - Object: Article

6. Action: Created

7. - Object: Article

8. Action: Updated

9. - Object: Article

10. Action: Read

11. - Name: manage article

12. - Operations:

13. - Object: Article

14. Action: Delete

15. - Object: Article

16. Action: Read

17. Set a Role named Writer, give it write article permission, and a Role

named Manager, give it manage article permission. CEO has all

permissions.

18. Role:

19. - Name: Writer

20. Permissions:

21. - write article

22. - Name: Manager

23. Permissions:

24. - manage article

25. - Name: CEO

26. Permissions:

27. - write article

28. - manage article

29. Give Dino Writer role

30. Subject: Dino

31. Roles:

32. - Writer

33. Dino can create article now.

34. Give James Writer and Manager roles

35. Subject: James

36. Roles:

37. - Writer

38. - Manager

39. James can create and delete article now.

Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) is a system that monitors network

traffic for suspicious activity and issues alerts when such activity is discovered.

It is a software application that scans a network or a system for harmful activity

or policy breaching. Any malicious venture or violation is normally reported

either to an administrator or collected centrally using a security information and

event management (SIEM) system. A SIEM system integrates outputs from

multiple sources and uses alarm filtering techniques to differentiate malicious

activity from false alarms.

Although intrusion detection systems monitor networks for potentially

malicious activity, they are also disposed to false alarms. Hence, organizations

need to fine-tune their IDS products when they first install them. It means

properly setting up the intrusion detection systems to recognize what normal

traffic on the network looks like as compared to malicious activity.

Intrusion prevention systems also monitor network packets inbound the system

to check the malicious activities involved in it and at once sends the warning

notifications.

Classification of Intrusion Detection System:

IDS are classified into 5 types:

1. Network Intrusion Detection System (NIDS):

Network intrusion detection systems (NIDS) are set up at a planned point

within the network to examine traffic from all devices on the network. It

performs an observation of passing traffic on the entire subnet and matches

the traffic that is passed on the subnets to the collection of known attacks.

Once an attack is identified or abnormal behavior is observed, the alert can

be sent to the administrator. An example of an NIDS is installing it on the

subnet where firewalls are located in order to see if someone is trying crack

the firewall.

2. Host Intrusion Detection System (HIDS):

Host intrusion detection systems (HIDS) run on independent hosts or

devices on the network. A HIDS monitors the incoming and outgoing

packets from the device only and will alert the administrator if suspicious or

malicious activity is detected. It takes a snapshot of existing system files and

compares it with the previous snapshot. If the analytical system files were

edited or deleted, an alert is sent to the administrator to investigate. An

example of HIDS usage can be seen on mission critical machines, which are

not expected to change their layout.

3. Protocol-based Intrusion Detection System (PIDS):

Protocol-based intrusion detection system (PIDS) comprises of a system or

agent that would consistently resides at the front end of a server, controlling

and interpreting the protocol between a user/device and the server. It is

trying to secure the web server by regularly monitoring the HTTPS protocol

stream and accept the related HTTP protocol. As HTTPS is un-encrypted

and before instantly entering its web presentation layer then this system

would need to reside in this interface, between to use the HTTPS.

4. Application Protocol-based Intrusion Detection System (APIDS):

Application Protocol-based Intrusion Detection System (APIDS) is a system

or agent that generally resides within a group of servers. It identifies the

intrusions by monitoring and interpreting the communication on application

specific protocols. For example, this would monitor the SQL protocol

explicit to the middleware as it transacts with the database in the web server.

5. Hybrid Intrusion Detection System :

Hybrid intrusion detection system is made by the combination of two or

more approaches of the intrusion detection system. In the hybrid intrusion

detection system, host agent or system data is combined with network

information to develop a complete view of the network system. Hybrid

intrusion detection system is more effective in comparison to the other

intrusion detection system. Prelude is an example of Hybrid IDS.

Detection Method of IDS:

1. Signature-based Method:

Signature-based IDS detects the attacks on the basis of the specific patterns

such as number of bytes or number of 1’s or number of 0’s in the network

traffic. It also detects on the basis of the already known malicious

instruction sequence that is used by the malware. The detected patterns in

the IDS are known as signatures.

Signature-based IDS can easily detect the attacks whose pattern (signature)

already exists in system but it is quite difficult to detect the new malware

attacks as their pattern (signature) is not known.

2. Anomaly-based Method:

Anomaly-based IDS was introduced to detect the unknown malware attacks

as new malware are developed rapidly. In anomaly-based IDS there is use of

machine learning to create a trustful activity model and anything coming is

compared with that model and it is declared suspicious if it is not found in

model. Machine learning based method has a better generalized property in

comparison to signature-based IDS as these models can be trained according

to the applications and hardware configurations.

Comparison of IDS with Firewalls:

IDS and firewall both are related to the network security but an IDS differs from

a firewall as a firewall looks outwardly for intrusions in order to stop them from

happening. Firewalls restrict access between networks to prevent intrusion and

if an attack is from inside the network it don’t signal. An IDS describes a

suspected intrusion once it has happened and then signals an alarm.

SQL Injection

SQL injection is a code injection technique that might destroy your database.

SQL injection is one of the most common web hacking techniques.

SQL injection is the placement of malicious code in SQL statements, via web

page input.

SQL in Web Pages

SQL injection usually occurs when you ask a user for input, like their

username/userid, and instead of a name/id, the user gives you an SQL statement

that you will unknowingly run on your database.

Look at the following example which creates a SELECT statement by adding a

variable (txtUserId) to a select string. The variable is fetched from user input

(getRequestString):

Example

txtUserId = getRequestString("UserId");

txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

The rest of this chapter describes the potential dangers of using user input in

SQL statements.

SQL Injection Based on 1=1 is Always True

Look at the example above again. The original purpose of the code was to

create an SQL statement to select a user, with a given user id.

If there is nothing to prevent a user from entering "wrong" input, the user can

enter some "smart" input like this:

UserId:
105 OR 1=1

Then, the SQL statement will look like this:

SELECT * FROM Users WHERE UserId = 105 OR 1=1;

The SQL above is valid and will return ALL rows from the "Users" table,

since OR 1=1 is always TRUE.

Does the example above look dangerous? What if the "Users" table contains

names and passwords?

The SQL statement above is much the same as this:

SELECT UserId, Name, Password FROM Users WHERE UserId = 105 or 1=1;

A hacker might get access to all the user names and passwords in a database, by

simply inserting 105 OR 1=1 into the input field.

SQL Injection Based on ""="" is Always True

Here is an example of a user login on a web site:

Username:
John Doe

Password:
myPass

Example

uName = getRequestString("username");

uPass = getRequestString("userpassword");

sql = 'SELECT * FROM Users WHERE Name ="' + uName + '" AND Pass ="'

+ uPass + '"'

Result

SELECT * FROM Users WHERE Name ="John Doe" AND Pass ="myPass"

A hacker might get access to user names and passwords in a database by simply

inserting " OR ""=" into the user name or password text box:

User Name:

Password:

The code at the server will create a valid SQL statement like this:

Result

SELECT * FROM Users WHERE Name ="" or ""="" AND Pass ="" or ""=""

The SQL above is valid and will return all rows from the "Users" table,

since OR ""="" is always TRUE.

SQL Injection Based on Batched SQL Statements

Most databases support batched SQL statement.

A batch of SQL statements is a group of two or more SQL statements, separated

by semicolons.

The SQL statement below will return all rows from the "Users" table, then

delete the "Suppliers" table.

Example

SELECT * FROM Users; DROP TABLE Suppliers

Look at the following example:

Example

txtUserId = getRequestString("UserId");

txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

And the following input:

User id:
105; DROP TA

The valid SQL statement would look like this:

Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

Use SQL Parameters for Protection

To protect a web site from SQL injection, you can use SQL parameters.

SQL parameters are values that are added to an SQL query at execution time, in

a controlled manner.

ASP.NET Razor Example

txtUserId = getRequestString("UserId");

txtSQL = "SELECT * FROM Users WHERE UserId = @0";

db.Execute(txtSQL,txtUserId);

Note that parameters are represented in the SQL statement by a @ marker.

The SQL engine checks each parameter to ensure that it is correct for its column

and are treated literally, and not as part of the SQL to be executed.

Another Example

txtNam = getRequestString("CustomerName");

txtAdd = getRequestString("Address");

txtCit = getRequestString("City");

txtSQL = "INSERT INTO Customers (CustomerName,Address,City)

Values(@0,@1,@2)";

db.Execute(txtSQL,txtNam,txtAdd,txtCit);

Examples

The following examples shows how to build parameterized queries in some

common web languages.

SELECT STATEMENT IN ASP.NET:

txtUserId = getRequestString("UserId");

sql = "SELECT * FROM Customers WHERE CustomerId = @0";

command = new SqlCommand(sql);

command.Parameters.AddWithValue("@0",txtUserID);

command.ExecuteReader();

INSERT INTO STATEMENT IN ASP.NET:

txtNam = getRequestString("CustomerName");

txtAdd = getRequestString("Address");

txtCit = getRequestString("City");

txtSQL = "INSERT INTO Customers (CustomerName,Address,City)

Values(@0,@1,@2)";

command = new SqlCommand(txtSQL);

command.Parameters.AddWithValue("@0",txtNam);

command.Parameters.AddWithValue("@1",txtAdd);

command.Parameters.AddWithValue("@2",txtCit);

command.ExecuteNonQuery();

INSERT INTO STATEMENT IN PHP:

$stmt = $dbh->prepare("INSERT INTO Customers

(CustomerName,Address,City)

VALUES (:nam, :add, :cit)");

$stmt->bindParam(':nam', $txtNam);

$stmt->bindParam(':add', $txtAdd);

$stmt->bindParam(':cit', $txtCit);

$stmt->execute();

